Caltech

HOMES

Habitat Orientable & Modular Electrodynamic Shield

California Institute of Technology

Dr. Soon-Jo Chung Lead Advisor

> Malcolm Tisdale Team Lead

Richard Abbott

Nathan Ng Validation Lead

Nisreen AlSaud

Tanmay Gupta

Kemal Pulungan

Leah Soldner

ADVISORS

Dr. Manan Arya Dr. Charles Elachi Dr. Jason Kastner

Dr. Michael Mello

Isabella Dula Mechatronics Lead

Luis Pabon Manufacturing Lead

Hope Arnett

Athena Kolli

Raha Riazati

Ellande Tang

Calle Junker Verification Lead

Jules Penot Treasurer

Kristine Chelakkat

Sorina Lupu

Sydney Richardson

Helen Wexler

Amrita Mayavaram **Electronics** Lead

Polina Verkhovodova Design Lead

Kaila Coimbra

Rithvik Musuku

Parul Singh

Sarah Yun

The Problem with Lunar Dust

The Solution - HOMES Overview

State of the Art in Dust Mitigation

Mass - 2kg | panel Power - 7w | panel Modular \succ Scalable \succ Orientable Mass 2 kg | panel Power 7 N | panel > Robust \succ Portable Easy to use \succ Time-saving

4 connected HOMES panels

20"

10"

ConOps

Phase 1 - Launch

HOMES is packaged and prepared for launch HOMES is stowed inside a lunar habitat for later setup

Phase 2 - Assembly

Panels are tiled together in lunar habitat

Attach collection panels in desired locations

End caps attached on exposed panel edges

Control unit connected to panels and powe<u>r source</u> Four HOMES panels connected together

End cap and collection panel attached

Phase 3 - Use

Turn system power to ON state

Turn EDS switch to ON state

Dust is transported across panels surface into collection panels

Phase 4 - Reset

Turn both switches to OFF state

Remove collection panels and safely dispose of dust

Return collection panel or disassemble

Panels Can Be Connected Without Tools

Easy assembly and disassembly of two HOMES panels

HOMES Modularity Demonstration

Three HOMES panels oriented 90 degrees with respect to the next and one collection 1x Speed panel

Internal Panel Assembly

Low-Cost EDS and Power Supply

4-Phased, 3.8kV, 10 Hz square-waves generated by custom power supply integrated into each panel

EDS using FR4 substrate printed circuit board (PCB)

Close-up of upper left-hand corner of EDS PCB layout. Electrodes in red, spaced 1 mm apart. Power loops and connecting tracks in orange, purple and blue

HOMES clears >98% dust in 60 seconds

Testing Program Summary

	Test Name	TRL	Results	
Electrical	Dust Locomotion	4	98-99% of dust cleared	
	High Potential	4	Kapton and conformal coating protects from arcing	
	Accelerated Lifetime	5	Functioning after 400 continuous operating hours	
Mechanical	Load	5	Sustained 442.8 N load for 20s	
	Impact	5	Sustained 24.7 cm impact from astronaut	
	Vibration	5	Sustained minimum workmanship standard	

Accomplishments

- Successfully demonstrates proof of concept for first *modular* EDS system
- Reliably moves >98% of dust in 60 seconds
 - Pending TRL 5

Future Work

Path-to-Flight

Better protection of EDS PCB and screen printed arrow

Further vibration testing and packaging

Further lifetime testing

Future Improvements

Reduce SWaP

Develop thermal management

Adapt design for different environments

Easily adaptable to other environments including Mars

Acknowledgements

Thank you to our institutions:

Thank you to the administrators:

Stacy Dees Victoria O'Leary Jamie Meighen-Sei Martha Salcedo Ling Lin Dr. Greg Davis Tasha Hsu Dr. Ravi Ravichandran John Kosmatka Marionne Epalle

Thank you to our mentors:

Dr. Soon-Jo Chung GALCIT Professor Lead Advisor

Mr. Richard Abbott LIGO Engineer Advisor

Dr. Charles Elachi Former JPL Director Advisor & Speaker

Dr. Michael Mello MCE Professor Advisor

Dr. Jason Kastner JPL Deputy Manager Advisor

Dr. Manan Arya JPL Engineer Advisor

California Institute of Technology Habitat Orientable and Modular Electrodynamic Shield (HOMES)

HOMES: modular panels that tile together to actively clean floors, workspaces, walls, and surfaces in lunar habitats

Leverages and expands upon Electrodynamic Dust Shielding (EDS) technology

Portability, low power requirement, and long-term durability make HOMES an ideal dust mitigation solution to enable extended human presence on the Moon

State of the Art EDS

Modularity Scalability Orientability Robustness Ease of use / Portability

Dust Removal

removes >98% of dust (0.5-500 μm) **Modularity**

successfully connected 4 panels Long Lifetime

survived equivalent >10 years of use Launch & Astronaut-Ready load, impact, and vibration tested